Close Tue: 10.2/13.2, 10.3
Close Thu: 13.3 (finish much sooner) Midterm 1, Thursday, Apr. $20^{\text {th }}$
Covers 12.1-12.5, 10.1-10.3, 13.1-13.3
Today: A bit of 10.2/13.2 (calculus on curves), then 10.3 (polar coordinates)

10.2/13.2 Calculus on curves

This first page is review from Math 124 (read 10.2 for a refresher).
Going from 2D parametric to slope and concavity:

$$
\frac{d y}{d x}=\frac{d y / d t}{d x / d t} \text { and } \frac{d^{2} y}{d x^{2}}=\frac{\frac{d}{d t}\left(f^{\prime}(x)\right)}{d x / d t}
$$

Entry Task: Consider

$$
x=t, y=2-t^{2}
$$

(a) Find $d y / d x$ and $d^{2} y / d x^{2}$.
(b) Find the equation for the tangent line at $\mathrm{t}=3$. (put in form $y=m x+b$).

New: Consider

$$
\boldsymbol{r}(t)=\left\langle t, 2-t^{2}\right\rangle
$$

(a) Find a tangent vector.
(b) Find parametric equations for the tangent line at $\mathrm{t}=3$.

In general: (Vector Calculus)
We define $\overrightarrow{\boldsymbol{r}}^{\prime}(t)=\lim _{h \rightarrow 0}\left\langle\frac{x(t+h)-x(t)}{h}, \frac{y(t+h)-y(t)}{h}, \frac{z(t+h)-z(t)}{h}\right\rangle$
Thus, $\overrightarrow{\boldsymbol{r}}^{\prime}(t)=\left\langle x^{\prime}(t), y^{\prime}(t), z^{\prime}(t)\right\rangle$.
Morale, do calculus component-wise.
Example: $\overrightarrow{\boldsymbol{r}}(t)=\langle t, \cos (2 t), \sin (2 t)\rangle$.
(a) Find $\overrightarrow{\boldsymbol{r}}^{\prime}(t)$.
(b) Give parametric equations for the tangent line at $t=\pi / 4$.

10.3 Polar Coordinates

Goal: A 2D coordinate system good for describing circular/arcing paths.

Cartesian	Polar		
$\begin{array}{l}\text { Given }(x, y) \\ \text { 1. Stand at origin. }\end{array}$	$\begin{array}{l}\text { Given }(r, \theta) \\ \text { 1. Stand at origin } \\ \text { facing the } \\ \text { positive } x \text {-axis. }\end{array}$		
$\begin{array}{l}\text { 2. Move x-units } \\ \text { on x-axis. } \\ \text { pos. }=\text { right, } \\ \text { neg. }=\text { left }\end{array}$	2.Rotate by θ.		
3. Move y-units			
parallel to y-axis.	$\begin{array}{l}\text { pos. }=\text { ccw, } \\ \text { neg. }=\text { clockwise }\end{array}$		
direction you are			
facing.		$\}$	pos. $=$ forward
:---			
neg. $=$ down	\quad	neg. $=$ backward	
:---			

Example: Plot these polar points

1. $(r, \theta)=(1, \pi / 2)$
2. $(r, \theta)=(3,5 \pi / 4)$
3. $(r, \theta)=(0, \pi / 3)$
4. $(r, \theta)=(-1,3 \pi / 2)$
5. $(r, \theta)=(4,0)$
6. $(r, \theta)=(4,100 \pi)$

From trig we already know:

$$
\begin{array}{ll}
x=r \cos (\theta), & y=r \sin (\theta) \\
\tan (\theta)=\frac{y}{x}, & x^{2}+y^{2}=r^{2}
\end{array}
$$

Exercise:

1. Describe all pts where $r=3$.

2. Describe all pts where $\theta=\pi / 4$.

Plotting Polar Curves

Option 1: Try to convert to x and y.
Then hope you recognize the curve.

Option 2: Plot points!

Start with $0, \pi / 2, \pi, 3 \pi / 2$. For more detail do multiples of $\pi / 6$ and $\pi / 4$.

Option 3: Do some calculus first.

$$
\begin{aligned}
& \text { If } r=f(\theta) \text {, then } \\
& \qquad \begin{aligned}
x & =r \cos (\theta)=f(\theta) \cos (\theta) \\
y & =r \sin (\theta)=f(\theta) \sin (\theta)
\end{aligned}
\end{aligned}
$$

so

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d y / d \theta}{d x / d \theta} \\
& =\frac{f^{\prime}(\theta) \sin (\theta)+f(\theta) \cos (\theta)}{f^{\prime}(\theta) \cos (\theta)-f(\theta) \sin (\theta)}
\end{aligned}
$$

Example: Graph $r=\sin (\theta)$

$\boldsymbol{\theta}$	0	$\pi / 2$	π	$3 \pi / 2$	2π
\mathbf{r}					

$\boldsymbol{\theta}$	$\pi / 6$	$\pi / 4$	$\pi / 3$	$2 \pi / 3$	$3 \pi / 4$	$5 \pi / 6$
\mathbf{r}						

Example: Graph $r=\cos (2 \theta)$

$\boldsymbol{\theta}$	0	$\pi / 2$	π	$3 \pi / 2$	2π
\mathbf{r}					

$\boldsymbol{\theta}$	$\pi / 6$	$\pi / 4$	$\pi / 3$	$2 \pi / 3$	$3 \pi / 4$	$5 \pi / 6$
\mathbf{r}						

An old exam question: The four polar equations below each match up with one of the six pictures. Identify which match.

1. $r=\sqrt{\theta}$
2. $r=1-2 \cos (\theta)$
3. $r=1+\sin (2 \theta)$
4. $r=9 \cos (\theta)$

C

