Close Tue: 10.2/13.2, 10.3 Close Thu: 13.3 (finish much sooner) Midterm 1, Thursday, Apr. 20th Covers 12.1-12.5, 10.1-10.3, 13.1-13.3

Today: A bit of 10.2/13.2 (calculus on curves), then 10.3 (polar coordinates)

10.2/13.2 Calculus on curves

This first page is review from Math 124 (read 10.2 for a refresher). Going from 2D parametric to slope and concavity:

 $\frac{dy}{dx} = \frac{dy/dt}{dx/dt}$ and $\frac{d^2y}{dx^2} = \frac{\frac{d}{dt}(f'(x))}{dx/dt}$

Entry Task: Consider $x = t, y = 2 - t^2$ (a) Find dy/dx and d^2y/dx^2 .

(b) Find the equation for the tangent line at t = 3. (put in form y = mx + b). New: Consider

$$\boldsymbol{r}(t) = \langle t, 2 - t^2 \rangle$$

- (a) Find a tangent vector.
- (b) Find parametric equations for the tangent line at t = 3.

In general: (Vector Calculus)

We define $\vec{r}'(t) = \lim_{h \to 0} \left\{ \frac{x(t+h) - x(t)}{h}, \frac{y(t+h) - y(t)}{h}, \frac{z(t+h) - z(t)}{h} \right\}$ Thus, $\vec{r}'(t) = \langle x'(t), y'(t), z'(t) \rangle$. Morale, do calculus **component-wise**.

Example:
$$\vec{r}(t) = \langle t, \cos(2t), \sin(2t) \rangle$$
.
(a) Find $\vec{r}'(t)$.

(b) Give parametric equations for the tangent line at $t = \pi/4$.

10.3 Polar Coordinates

Goal: A 2D coordinate system good 1 for describing circular/arcing paths. 2

Cartesian	Polar
Given (x, y)	Given (r <i>,</i> θ)
1. Stand at origin.	1. Stand at origin
	facing the
	positive <i>x</i> -axis.
2. Move x-units	2.Rotate by θ.
on x-axis.	
pos. = right <i>,</i>	pos. = ccw,
neg. = left	neg. = clockwise
3. Move y-units	3.Walk <i>r</i> -units in
parallel to y-axis.	direction you are
	facing.
pos. = up	pos. = forward
neg. = down	neg. = backward

Example: Plot these polar points

1.
$$(r, \theta) = (1, \pi/2)$$

2. $(r, \theta) = (3, 5\pi/4)$
3. $(r, \theta) = (0, \pi/3)$
4. $(r, \theta) = (-1, 3\pi/2)$
5. $(r, \theta) = (4, 0)$
6. $(r, \theta) = (4, 100 \pi)$

From trig we already know:

$$x = r \cos(\theta),$$
 $y = r \sin(\theta)$
 $\tan(\theta) = \frac{y}{x},$ $x^2 + y^2 = r^2$

Exercise:

1. Describe all pts where r = 3.

2. Describe all pts where $\theta = \pi/4$.

Plotting Polar Curves

Option 1: Try to convert to x and y. Then hope you recognize the curve.

Option 2: Plot points!

Start with 0, $\pi/2$, π , $3\pi/2$. For more detail do multiples of $\pi/6$ and $\pi/4$.

Option 3: Do some calculus first. If $r = f(\theta)$, then $x = r\cos(\theta) = f(\theta)\cos(\theta)$ $y = r\sin(\theta) = f(\theta)\sin(\theta)$ so $\frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta}$ $= \frac{f'(\theta)\sin(\theta) + f(\theta)\cos(\theta)}{f'(\theta)\cos(\theta) - f(\theta)\sin(\theta)}$

Example: Graph $r = sin(\theta)$

θ	0	π/2	π	3π/2	2π
r					

θ	π/6	π/4	π/3	2π/3	3π/4	5π/6
r						

Example: Graph $r = cos(2\theta)$

θ	0	π/2	π	3π/2	2π
r					

θ	π/6	π/4	π/3	2π/3	3π/4	5π/6
r						

An old exam question:

The four polar equations below each match up with one of the six pictures. Identify which match.

1.
$$r = \sqrt{\theta}$$

2.
$$r = 1 - 2\cos(\theta)$$

- 3. $r = 1 + \sin(2\theta)$
- 4. $r = 9\cos(\theta)$

